

Product Specification

Class2 Bluetooth v2.1 Flash Module

[Generic Version]

BT-1022

Version: 1.0

Edition #	Reason for revision	Issue Date	Written by
1.0	Initial Document	2011/11/04	Kevin Shen

Revision History

Copyright Notice

Copyright © 2010 AtechOEM Technology Co., Ltd. All Rights Reserved. Reproduction without permission is prohibited.

Trademarks

AtechOEM is a registered trademark of AtechOEM Technology Co., Ltd.

Disclaimer

Information in this document is subject to change without notice and does not represent a commitment on the part of AtechOEM. AtechOEM provides this document "as is," without warranty of any kind, either expressed or implied, including, but not limited to, its particular purpose. AtechOEM reserves the right to make improvements and/or changes to this manual, or to the products and/or the programs described in this manual, at any time. Information provided in this manual is intended to be accurate and reliable. However, AtechOEM assumes no responsibility for its use, or for any infringements on the rights of third parties that may result from its use. This product might include unintentional technical or typographical errors. Changes are periodically made to the information herein to correct such errors, and these changes are incorporated into new editions of the publication.

Technical Support Contact Information

If you encounter any technical issues while using BM-1060, do not hesitate to contact us @AtechOEM. Our technical staff will help you resolve the technical issues. You can contact us by email or phone. The following is our technical contact:

- Hours: 9:30AM to 5:30PM (GMT+08:00)
- Email: <u>wifi.support@atechtpe.com.tw</u>
- Phone: +886.2.2377.0282

CONTENTS

1. OVERVIEW	5
2. TYPICAL APPLICATIONS	7
3. PRODUCT INFORMATION	8
4. HARDWARE	9
4.1. BLOCK DIAGRAM	10
4.2 Pin Assignment:	10
4.3. DIMENSIONS	13
4.4. ELECTRICAL CHARACTERISTICS	14
4.5. RADIO CHARACTERISTICS	15
4.6. Reflow Profile	16
5. SOFTWARE & OPERATION MODE	17
5.1. PIO OPERATION MODE	
5.2. AT-COMMAND OPERATION MODE	19
5.3. SPP Connection Example in AT-command mode	20
APPENDIX A: AT COMMAND	21
A.1. AT COMMAND FORMAT	21
A.2. AT COMMAND RESPONSE FORMAT	21
A.3. Set Commands	23
A.4. Get Commands	24

1. Overview

AtechOEM BT-1022 module is highly tuned surface mount PCB module that provides fully embedded, ready to use Bluetooth wireless technology. It is also a field-proven software programmable compact **CSR BC04** external Bluetooth v2.1 module. With independent CPU and flash memory, the Bluetooth protocol stack is put on the module such as **SPP** or **HID**. The module makes adding Bluetooth connectivity easy because the host system does not need to handle the Bluetooth protocol stack. It also could be configured as a **HCI** Bluetooth module. With the HCI module, a host system can use its own Bluetooth protocol and profile to complete its own application.

SPP (Serial Port Profile)

SPP (Serial Port Profile) is used by devices using Bluetooth for RS232 (or similar) serial cable emulation. It is the most popular profile used in many kinds of applications. Integrators can easily implement serial cable replacement applications in their legacy wired applications.

Since all Bluetooth protocol stacks are managed by the module, Bluetooth connectivity can be easily added to devices with 8- or 16-bit processors, eliminating the need to port existing applications to a more complicated platform and resulting in fastest time to market and reduced development costs.

HID (Human Interface Device Profile)

HID profile shall be used by Bluetooth Human Interface Devices, such as keyboards, pointing devices, gaming devices, and remote monitoring devices. It adopts USB definition of Human Interface Device in order to leverage the existing class drivers for USB HID devices.

For users to configure and control the module from a PC or host processor, there are two options of standard firmware available. They are **AT command interface** and **PIO control interface** options. In addition to standard firmware on BT-1021, <u>AtechOEM also offer **customized firmware services** to meet <u>specific applications more tightly.</u></u>

AT command interface

AT command interface provides users a fully flexible control to BT module through a UART interface. Users can use AT command instructions to create Bluetooth wireless connectivity and configure many Bluetooth parameters into the BT module. It's suitable that the BT module want to act as either a master or slave BT devices.

■ PIO control interface

PIO control interface provides an extremely easy method to create a BT connectivity between BT module and a remote BT device. Users only need to measure few GPIO's level and pull high/low them to control

the behaviour of the BT module. It's suitable that the BT module only acts as a slave Bluetooth device to listen to the connection request from a remote Bluetooth device.

HIC Mode

Host Controller Interface (HCI) is a standard interface that a host system can access Bluetooth's directly. BT-1022 module could be configured in HCI mode, which provides a command reference interface to the baseband controller and the link manager, and provides access to the hardware status and control registers.

In this mode, the Bluetooth stack is no longer existed in module itself. A host system needs to use its own Bluetooth stack/driver to access the BT module. The Bluetooth module is regarded as a radio transceiver. Using this module in HCI mode allows users to use standard profiles or proprietary methods to transceiver the related data stream among Bluetooth devices.

BT-1022 provides two HCI interfaces to a host processor – UART and USB. **HCI-over-UART** allows a host processor to access BT module through an UART interface. An USB interface is used between BT-1022 and a host processor. In **HCI-over-USB**, the BT module is the USB slave and the host processor is the USB host.

2. Typical Applications

- Asset tracking
- Measurement/ Remote Equipment Monitoring

Cable Replacement Logical Diagram

- Scanners
- Sensors & Controls

- Industrial devices
- Point-of-Sale systems
- Automotive Diagnostics Units
- Handheld terminals

Barcode Scanner & POS Applications Diagram

3. Product Information

Product Number : **BM-1022**

Product Description: <u>Bluetooth Class2 v2.1+EDR Flash Module</u>

Product Features:

Chip	CSR BlueCore-04 External
Standard	Bluetooth v2.1 + EDR
Flash	8MB
RF band	2.4~2.4835GHz ISM band
Host Interface	UART / USB
Digital Interface	PCM / GPIOs
RF Output Power	Class II (<4dBm)
Sensitivity	<-80dBm
Antenna	External antenna
Power voltage	3.3V
Dimension	21.8mm x 15mm x 3mm

Product photo :

4. Hardware

BT-1022 class 2 is a surface-mount module designed to be integrated to a system board as a wireless subsystem or standalone system. The interface is grouped into the following functional blocks:

- > Power supplies: VCC line should be connected to 3.3VDC.
- > GPIOs: The PIO lines can be configured as general purpose 3.3V level digital inputs or outputs.
- UART: UART_TX, UART_RX, UART_CTS and UART_RTS are UART communication interface signals. UART_CTS and UART_RTS are not necessary to be connected if hardware flow control is not used.
- > USB: USB interface is used for HCI mode only.
- PCM: PCM interface is used for audio codec. Special software programming support is required.
- SPI: SPI interface can be set to master or slave. This is software programmable. Special software programming support is required.
- > RF: The RF_OUT should be connected to the antenna.

Hardware Integration

The module requires only 5 connections to power up and create a Bluetooth wireless connection. In the simplest configuration, the hardware only needs the following connections: VCC, RF_OUT, UART-TX, UART-RX, and GND. VCC and GND pins connect to a regulated 3.3VDC power supply. The RF_OUT connects to a 2.4GHz antenna. The user connects UART-TX, UART-RX and ground pins to the host controller or a PC. The host controller or a PC can control the module and set up Bluetooth connection with the commands and settings defined in this document.

The user can also use other functional blocks like GPIO, USB, SPI and PCM interfaces. Special software support is required to use these interfaces.

4.1. Block Diagram

4.2 Pin Assignment:

The following picture shows pinouts of BT-1022 from the top and bottom of the module.

Pin	Name	Туре	Note
1	GND		
2	NC		
3	GND		
4	TEST_A		Internal Testing Use
5	TEST_B		Internal Testing Use
6	RESET	In	1. It should be pulled low for normal operation
			(Active High)
			2. A Reset will be performed after PIN6 being
			active for 1.5~4.0 ms
7	SPI_MISO	In	Internal Testing Use
8	SPI_CSB	In	Internal Testing Use
9	SPI_CLK	In/Out	Internal Testing Use
10	SPI_MOSI	Out	Internal Testing Use
11	UART_CTS	In	
12	UART_TX	Out	Connect to host processor UART RX pin
13	UART_RTS	Out	
14	UART_RX	In	Connect to host processor UART TX pin
15	VCC_1.8V	Out	
16	VCC_3.3V	In	Main power supply
17	GND		
18	PCM_OUT	Out	Codec Interface
19	PCM_SYNC	In/Out	Codec Interface
20	PCM_IN	In	Codec Interface
21	PCM_CLK	In/Out	Codec Interface
22	USB+	In/Out	
23	USB-	In/Out	
24	PIO7	In/Out	General Purpose I/O
25	PIO6	In/Out	General Purpose I/O
26	PIO5	In/Out	General Purpose I/O
27	PIO4	In/Out	General Purpose I/O
28	PIO3	In/Out	General Purpose I/O
29	PIO2	In/Out	General Purpose I/O
30	PIO1	In/Out	Internal Used
31	PIO0	In/Out	Internal Used

Atech OEM Inc.

			Vers	<u>sion</u> 1.0
32	AGND		Analog GND	
33	RF_OUT		Connect to antenna	
34	AGND		Analog GND	
35	PIO8	In/Out	General Purpose I/O	
36	PIO9	In/Out	General Purpose I/O	
37	PIO10	In/Out	General Purpose I/O	
38	PIO11	In/Out	General Purpose I/O	

4.3. Dimensions

Use the dimensions shown in the picture below to do the PCB layout for the host system or carrier board that will use BT-1022.

4.4. Electrical Characteristics

	Min	Тур.	Max.	Unit
Supply Voltage	3.0	3.3	3.6	V
RX Supply Current	-	44	-	mA
TX Supply Current(Normal)	-	39	-	mA
TX Supply Current(Continuous)	-	50	-	mA
Sniff Mode Current	-	6	-	mA

Operating Conditions

Voltage Range	3.3V±0.3V
Operating Temperature Range	-20 °C ~ 70 °C
Storage Temperature Range	-40 °C ~ 85 °C
Relative Humidity (Operating)	≤90%
Relative Humidity (Storage)	≤90%

4.5. Radio Characteristics

	Frequency	Min	Тур	Max	BT Spec.	Unit
	(GHz)					
	2.402	-	-86	-80		dBm
Sensitivity at 0.1%BER	2.441	-	-86	-80	≤ -70	dBm
	2.480	-	-86	-80		dBm
	2.402	-6	0	4		dBm
RF Transmit Power	2.441	-6	0	4	≤4	dBm
	2.480	-6	0	4		dBm
Initial Carrier Frequency	2.402	-	5	75		kHz
	2.441	-	5	75	75	kHz
Tolerance	2.480	-	5	75		kHz
20dB bandwidth for modula	ated carrier	-	900	1000	≤1000	kHz
Drift (Five slots packet)		-	15	-	40	kHz
Drift Rate		-	13	-	20	kHz
Afl "Maximum Madula	2.402GHz	140	165	175	140 < Af1	kHz
Allavg Maximum Modula	2.441GHz	140	165	175	$140 < \Delta 11$ avg	kHz
lion	2.480GHz	140	165	175		kHz
AG2 (NAinimum NA) Li	2.402GHz	115	190	-		kHz
∆ı∠max "Minimum Modula	2.441GHz	115	190	-	115	kHz
lion	2.480GHz	115	190	-		kHz

Version 1.0

4.6. Reflow Profile

5. Software & Operation Mode

The special firmware in BT-1022 supports two different operation modes: **PIO mode** and **AT-Command mode**. Both modes support SPP (Serial Port Profile) as its application connection. These two modes operate separately based on different firmware provided by AtechOEM.

5.1. PIO Operation Mode

BT-1022 in PIO operation mode is controlled by hardware GPIOs. PIO control interface provides an extremely easy method to create a BT connectivity between BT module and a remote BT device. Users only need to measure few GPIO's level and pull high/low them to control the behaviour of the BT module. It's suitable that the BT module only acts as a slave Bluetooth device to listen to the connection request from a remote Bluetooth device.

Two sub-modes existed in PIO mode, which are **configuration** and **operation** mode. The configuration mode is used to set the UART setting. In the operation mode, BT module can be connected by a remote BT device. Baud rate of the UART is also configured in operation mode. **PIO7** is used to switch these two modes while powering/resetting the BT module.

Pins	Туре	Function	Descriptions	
PIO 2	(In)	Configure Baudrate or UART settings	Described below	
PIO 3	(In)	Configure Baudrate or UART settings	Described below	
PIO 4	(In)	Configure Baudrate or UART settings	Described below	
PIO 5	(In)	Configure Hardware Flow Control or DTE/DCE	Described below	
PIO 6	(Out)	LED	Blinks once per second: BT is in discoverable/disconnected status Blinks twice per second: BT is in connected status If in configuration mode, the LED is always ON.	
PIO 7	(In)	Reset Button	 To disconnect the connection from peer device; Drive high for at least 30 ms to enable the disconnecting procedure. To switch configuration/operation modes while power on reset 	
PIO 8	(In/Out)	DTR	Input for DTE / Output for DCE	
PIO9	(In/Out)	DSR	Output for DTE / Input for DCE	
PIO10	(In/Out)	DCD	Output for DTE / Input for DCE	
PIO 11	(In/Out)	RI	Output for DTE / Input for DCE	

PIO Definition in PIO mode:

Version 1.0

PIO Definition in "Configuration mode": (PIO7 is high while power-on)

The following table is used to configure UART setting.

Voltage Level / PIO	PIO2	PIO3	PIO4	PIO5
Low	One stop bit	No parity bit	Odd parity	DTE
High	Two stop bits	One parity bit	Even parity	DCE

PIO Definition in "Operation mode": (PIO7 is low while power-on)

The following table is used to configure the baud rate of UART.

	Voltage Level of PIO		
PIO4	PIO3	PIO2	Baud Rate of UART (bps)
Low	Low	Low	115200
Low	Low	High	57600
Low	High	Low	38400
Low	High	High	19200
High	Low	Low	9600
High	Low	High	4800
High	High	Low	2400
High	High	High	1200

The following table is used to configure the hardware flow control of UART

Voltage Level / PIO5	Hardware Flow Control
Low	On
High	Off

Default Configurations:

Bluetooth		UART	
Mode	Slave	Baud Rate	115200 bps
Profile	SPP	Data Bits	8
Device Name	BT SPP + BD ADDR (Lower)	Parity	No
PIN Code	"1234"	Stop Bits	1

5.2. AT-Command Operation Mode

BT-1022 in AT-Command operation mode is controlled by instruction method – AT Command. AT command interface provides users a fully flexible control to BT module through a UART interface. Users can use AT command instructions to create Bluetooth wireless connectivity and configure many Bluetooth parameters into the BT module. It's suitable that the BT module want to act as either a master or slave BT devices.

Two sub-modes existed in AT-Command mode, which are **Command** and **Data** mode. When BT module is not connected to any peer BT devices, BT module is in command mode. In command mode, users can operate and configure BT module through AT-commands. After SPP connection created, BT module could start to transceiver data from the UART interface to/from the SPP connection (radio interface). There are few simple settings could be configured by hardware PIOs refer to the below table.

PIO Definition in PIO mode:

Pins	Туре	Function	Descriptions
PIO 2	(Out)	CONNECTION_IND	Connected: High, otherwise: Low
PIO 3	(In)	SWITCH_HW_FC	Connected to VDD to enable CTS/RTS FC, otherwise left not connected
PIO 4	(NA)		
PIO 5	(In)	BUTTON_DISCONNECT	Pulled high to disconnect SPP connection
PIO 6	(In)	BAUD_RATE_115K2	Pulled high to reset baud rate to 115200 bps
PIO 7	(In)	BAUD_RATE_9K6	Pulled high to reset baud rate to 9600 bps
PIO 8	(NA)		
PIO9	(NA)		
PIO10	(NA)		
PIO 11	(NA)		

Default Configurations:

Bluetooth		UART	
Mode	Master/Slave	Baud Rate	9600 bps
Profile	SPP	Data Bits	8
Device Name	BT SPP	Parity	No
PIN Code	"0000"	Stop Bits	1

5.3. SPP Connection Example in AT-command mode

The following example describes simple initial, inquiring, connecting, data-sending/receiving and disconnecting process by using AT Command set in BT-1022.

Appendix A: AT Command

The modem-like AT Command set of BT-1022 is based on Command/Response handshake. The following sections describe syntax and commands used in command interface for the user to configure and control BT-1021.

A.1. AT Command Format

The AT command format is:

AT<cmd><cr> or AT<cmd>=<value><cr>

*** <cmd> represents *specified command;* <cr> represents \r

Format	Example	Example
AT+ <cmd><cr></cr></cmd>	AT + GLN \r	Host send Get local name command
AT+ <cmd>=<value><cr></cr></value></cmd>	AT + PIN = 12345678 \r	Host send Set pin code command

A.2. AT Command Response Format

The AT command response format is:

<cr><lf><Response Code><cr><lf>

*** <cr> represents \r; <lf> represents \n

There are two categories of Response Code:

Category 1 Response Code:

Example	Meaning	Condition & Notes
\r \n 1 \r \n	ОК	
	ie, AT+INQ = 000000, 15 ,10 \r	
\r \n 2 \r \n	EKKUK	(1 <= maxResponses <= 10)
		ie, AT+ ABC \r
	(command ABC is not available)	

Atech OEM Inc.

\r \n 4 \r \n

Category 2 Response Code:

Example	Meaning	Condition & Notes
\r \n +STA:state \r \n	STATE: to indicate current status	<pre>state: 1 : sppDevReady 2 : sppDevInquiring 3 : sppDevConnecting 4 : sppDevConnected</pre>
\r \n +SM:scanMode \r \n	SCANMODE: to indicate current scan mode	scanMode: 0 : hci_scan_enable_off 1 : hci_scan_enable_inq 2 : hci_scan_enable_page 3 : hci_scan_enable_inq_and_page
\r \n +INQ:address, classOfDevice \r \n	INQUIRY result	address: 12 hexadecimal classOfDevice: 6 hexadecimal
\r \n +INQC \r \n	INQUIRYCOMPLETE	
\r \n +COD: classOfDevice \r \n	to indicate class of device (local device)	classOfDevice: 6 hexadecimal
\r \n +LA:address \r \n	LocalAddress	address: 12 hexadecimal
\r \n +LN:name \r \n	Local Name: Return code of get local name command	User friendly name of the local device
\r \n +RN:address,name \r \n	Remote Name: Return code of get remote name command	address: 12 hexadecimal name: user friendly name of the remote device
\r \n +SSPP:address,result \r \n	SEARCHSPP : Return code of search SPP profile command	address: 12 hexadecimal Result: 0 : SPP profile not found 1 : SPP profile found
\r \n +CD:address \r \n	CONNECTED : Indication of SPP connection	address: 12 hexadecimal
\r \n \r \n	Connected : The last result code before entering data mode	

Atech OEM Inc.

Version 1.0

\r \n +++ \r \n	Disconnected : The first result code after	
	returning to command mode	

A.3. Set Commands

The Set commands are for the user to set the BT-1021 configuration.

SET Commands	Command Set	Conditions & Notes
Set inquiry scan and page scan mode command	AT + SSM = scanMode \r	<pre>scanMode: 0 : hci_scan_enable_off 1 : hci_scan_enable_inq 2 : hci_scan_enable_page 3 : hci_scan_enable_inq_and_page</pre>
Set pin code command	AT + PIN = pinCode \r	pinCode: default: 0000 4< pincode length <16
Set local name command	AT + SLN = localName \r	1 <= local name length <= 16
Set Baud rate command	AT + SBR = baudRate \r	baudRate: Default = 9k6 bps UART Baud rate =baudRate/0.004096 Some common values are: 9k6 baud - 39 19k2 baud - 79 38k4 baud - 157 57k6 baud - 236 115k2 baud - 472 230k4 baud - 944 460k8 baud - 1887 921k6 baud - 3775 1382k4 baud - 5662
Set class of device	AT + SCOD =	classOfDevice:
command	classOfDevice \r	6 hexadecimal class of device

		Version 1.
Delete all		
authorized devices	AT + DA \r	
command		

A.4. Get Commands

GET Commands	Command Set	Conditions & Notes
Get inquiry scan and page scan mode command	AT + GSM \r	
Get local name command	$AT + GLN \r$	
Get class of device command	AT + GCOD \r	
Get local address command	AT + GLA \r	
Cat remate name command	AT + GRN =	address:
Get remote name command	address \r	12 hexadecimal Bluetooth Device Address
Get state command	$AT + STA \r$	

A.5. Action Commands

The actions commands are for the users to control the BT-1021 to do certain actions. The defined actions are: Inquiry, Connect, Reset and Search SPP profile.

ACTION Commands	Command Set	Conditions & Notes
		classOfDevice:
		6 hexadecimal class of device filter
		set 000000 notified of all devices within
	AT + INQ = CLASSOFDEVICE,	range regardless of their class of device.
Inquiry command	MAXRESPONSES, TIMEOUT	audio/ video to be 000400;
	\ R	headset to be 200404
		maxResponses:
		1 <= maxResponses <= 10
		timeout:

		Version 1.0
		1(1.28 seconds) <= timeout <= 48(61.44 seconds)
Connect command	$AT + D = address \r$	address: 12 hexadecimal Bluetooth Device Address
Reset command	AT + RST \r	
Search SPP profile	AT + SSPP = address \r	address:
command		12 hexadecimal Bluetooth Device Address